Layerwise Adversarial Learning for Image Steganography

نویسندگان

چکیده

Image steganography is a subfield of pattern recognition. It involves hiding secret data in cover image and extracting the from stego (described as container image) when needed. Existing methods based on Deep Neural Networks (DNN) usually have strong embedding capacity, but appearance images easily altered by visual watermarks data. One reasons for this that, during end-to-end training process their Hiding Network, location information has changed. In paper, we proposed layerwise adversarial method to solve constraint. Specifically, unlike other methods, added single-layer subnetwork discriminator behind each layer capture representational power. The power serves two purposes: first, it can update weights which alleviates memory requirements; second, same guarantees that remains unchanged. Experiments datasets show significantly outperforms most advanced methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Adversarial Networks for Image Steganography

Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message contains a hidden payload, and recovering it if possible. Presence of hidden payloads is typically detected by a binary classifier. In the present study, we propose a new model for generating image-l...

متن کامل

CNN Based Adversarial Embedding with Minimum Alteration for Image Steganography

Historically, steganographic schemes were designed in a way to preserve image statistics or steganalytic features. Since most of the state-of-the-art steganalytic methods employ a machine learning (ML) based classifier, it is reasonable to consider countering steganalysis by trying to fool the ML classifiers. However, simply applying perturbations on stego images as adversarial examples may lea...

متن کامل

Regularizing deep networks using efficient layerwise adversarial training

Adversarial training has been shown to regularize deep neural networks in addition to increasing their robustness to adversarial examples. However, its impact on very deep state of the art networks has not been fully investigated. In this paper, we present an efficient approach to perform adversarial training by perturbing intermediate layer activations and study the use of such perturbations a...

متن کامل

Aesthetic-Driven Image Enhancement by Adversarial Learning

We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks involve training separate models for automatic cropping or color enhancement in a fully-supervised manner, which requires expensive annotations in the form of image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supe...

متن کامل

Branched Generative Adversarial Networks for Multi-Scale Image Manifold Learning

We introduce BranchGAN , a novel training method that enables unconditioned generative adversarial networks (GANs) to learn image manifolds at multiple scales. What is unique about BranchGAN is that it is trained in multiple branches, progressively covering both the breadth and depth of the network, as resolutions of the training images increase to reveal finer-scale features. Specifically, eac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12092080